Sains Malaysiana 54(1)(2025): 313-323
http://doi.org/10.17576/jsm-2025-5401-25
A Ratio-Type
Weighted Geometric Distribution for Modelling Overdispersed Count Data
(Taburan Geometri Berpemberat Jenis Nisbah untuk Memodelkan Data Bilangan Terlebih Serakan)
SHIN ZHU
SIM1, HASSAN S. BAKOUCH2,3, RAZIK RIDZUAN MOHD TAJUDDIN4,* & ULYA ABDUL RAHIM5
1School of Mathematical Sciences, University
of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
2Department of Mathematics, College of Science, Qassim University, Buraydah, Saudi Arabia
3Department of Mathematics, Faculty of Science, Tanta University,
Tanta, Egypt
4Department of Mathematical Sciences, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
5Deanery Office, Faculty of Medicine, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received: 11 June
2024/Accepted: 7 October 2024
Abstract
Weighted
distributions have always been a popular approach in developing flexible
distributions for data modelling. In this paper, we introduce a flexible
ratio-type weighted geometric distribution by adopting the geometric
distribution as a basic standard distribution and opting for weights,
represented as . The proposed distribution is overdispersed and is capable of accommodating data with
small mode values such as 0, 1 and 2. The proposed distribution has the
following properties – unimodal, log-concave and has increasing failure rates.
The moment estimator is obtained, and the resulting estimated parameter is
utilized as the initial point in finding the estimators based on the maximum
likelihood technique and probability generating function. A probability
comparison between the typical geometric distribution and the proposed
distribution is discussed as well. A collection of insurance claim datasets is
utilized for model fitting, and it was found out that generally, the proposed
distribution can adequately fit the datasets as opposed to other contending
distributions.
Keywords: Discrete
distributions; estimation geometric; simulation; weights
Abstrak
Taburan berpemberat selalu menjadi pendekatan yang popular dalam mengembangkan taburan fleksibel untuk pemodelan data. Dalam kajian ini, kami memperkenalkan taburan geometrik berpemberat jenis nisbah yang fleksibel dengan mengambil kira taburan geometrik sebagai taburan piawai asas dan memilih berat, yang diwakili sebagai . Taburan yang dicadangkan adalah terlebih serak dan mampu mengendalikan data dengan nilai mod kecil seperti 0, 1 dan 2. Taburan yang dicadangkan mempunyai sifat berikut – unimodal, log-cekung dan mempunyai kadar kegagalan yang meningkat. Penganggar momen diperoleh, dan parameter yang dianggarkan digunakan sebagai titik permulaan dalam mencari penganggar berdasarkan teknik kebolehjadian maksimum dan fungsi penjana kebarangkalian. Perbandingan kebarangkalian antara taburan geometrik biasa dan taburan yang dicadangkan turut dibincangkan. Koleksi set data tuntutan insurans digunakan untuk pemodelan dan didapati bahawa secara umum, taburan yang dicadangkan dapat memadankan set data dengan baik berbanding taburan lain yang dipertimbangkan.
Kata kunci: Geometrik; pemberat; penganggaran; simulasi; taburan diskret
REFERENCES
Almuhayfith, F.E., Bapat, S.R., Bakouch,
H.S. & Alnaghmosh, A.M. 2023. A flexible
semi-Poisson distribution with applications to insurance claims and biological
data. Mathematics 11(5): 1-15.
Bakouch, H.S. 2018. A weighted negative binomial
Lindley distribution with applications to dispersed data. Anais da Academia Brasileira de Ciências 90:
2617-2642.
Bhati, D. & Joshi, S. 2018. Weighted
geometric distribution with new characterizations of geometric distribution. Communications
in Statistics-Theory and Methods 47(6): 1510-1527.
Del Castillo, J. & Pérez-Casany, M. 1998. Weighted Poisson distributions for
overdispersion and underdispersion situations. Annals
of the Institute of Statistical Mathematics 50: 567-585.
Fisher, R.A. 1934. The effect of methods of
ascertainment upon the estimation of frequencies. Annals of Eugenics 6(1): 13-25.
Gómez-Déniz, E.
& Calderín-Ojeda, E. 2011. The discrete Lindley
distribution: Properties and applications. Journal of Statistical
Computation and Simulation 81(11): 1405-1416.
Gossiaux, A.M. & Lemaire, J. 1981. Méthodes d’ajustement de
distributions de sinistres. Bulletin of the
Association of Swiss Actuaries 81: 87-95.
Gupta, R.D. & Kundu, D. 2009. A new
class of weighted exponential distributions. Statistics 43(6): 621-634.
Patil, G.P. 1991. Encountered data,
statistical ecology, environmental statistics, and weighted distribution
methods. Environmetrics 2(4): 377-423.
Patil, G.P. & Rao, C.R. 1978. Weighted
distributions and size-biased sampling with applications to wildlife
populations and human families. Biometrics 34(2): 179-189.
Puig, P., Valero, J. & Fernández‐Fontelo, A. 2024. Some mechanisms leading to underdispersion: Old and new proposals. Scandinavian
Journal of Statistics 51(1): 245-267.
Rao, C.R. 1965. On discrete distributions
arising out of methods of ascertainment. Sankhyā:
The Indian Journal of Statistics, Series A 27(2/4): 311-324.
Ridout, M.S. & Besbeas,
P. 2004. An empirical model for underdispersed count
data. Statistical Modelling 4(1): 77-89.
Sim, S.Z. & Ong, S.H. 2010. Parameter
estimation for discrete distributions by generalized Hellinger-type divergence
based on probability generating function. Communications in Statistics -
Simulation and Computation 39(2): 305-314.
Tajuddin, R. R. M. & Ismail, N. 2023. A New
One-Parameter Size-Biased Poisson Distribution for Modelling Underdispersed Count Data. Malaysian Journal of
Fundamental and Applied Sciences 19(2)1: 64-172.
*Corresponding author; email:
rrmt@ukm.edu.my